431 research outputs found

    Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond

    Get PDF
    If there was a first order phase transition in the early universe, there should be an associated stochastic background of gravitational waves. In this paper, we point out that the characteristic frequency of the spectrum due to phase transitions which took place in the temperature range 100 GeV - 10^7 GeV is precisely in the window that will be probed by the second generation of space-based interferometers such as the Big Bang Observer (BBO). Taking into account the astrophysical foreground, we determine the type of phase transitions which could be detected either at LISA, LIGO or BBO, in terms of the amount of supercooling and the duration of the phase transition that are needed. Those two quantities can be calculated for any given effective scalar potential describing the phase transition. In particular, the new models of electroweak symmetry breaking which have been proposed in the last few years typically have a different Higgs potential from the Standard Model. They could lead to a gravitational wave signature in the milli-Hertz frequency, which is precisely the peak sensitivity of LISA. We also show that the signal coming from phase transitions taking place at T ~ 1-100 TeV could entirely screen the relic gravitational wave signal expected from standard inflationary models.Comment: 18 pages, 24 figure

    (Dys)Zphilia or a custodial breaking Higgs at the LHC

    Get PDF
    Electroweak precision measurements established that custodial symmetry is preserved to a good accuracy in the gauge sector after electroweak symmetry breaking. However, recent LHC results might be interpreted as pointing towards Higgs couplings that do not respect such symmetry. Motivated by this possibility, we reconsider the presence of an explicitly custodial breaking coupling in a generic Higgs parameterization. After briefly commenting on the large UV sensitivity of the T parameter to such a coupling, we perform a fit to results of Higgs searches at LHC and Tevatron, and find that the apparent enhancement of the ZZ channel with respect to WW can be accommodated. Two degenerate best-fit points are present, which we label `Zphilic' and `dysZphilic' depending on the sign of the hZZ coupling. Finally we highlight some measurements at future linear colliders that may remove such degeneracy.Comment: 16 pages, 10 figure

    Higgsless Electroweak Symmetry Breaking

    Get PDF

    Higgs Physics

    Get PDF
    AbstractWith the discovery of the Higgs boson a new era started with direct experimental information on the physics behind the breaking of the electroweak symmetry. This breaking plays a fundamental role in our understanding of particle physics and sits at the high-energy frontier beyond which we expect new physics that supersedes the Standard Model. The Higgs (inclusive and differential) production and decay rates offer a new way to probe this frontier. The Higgs boson used to be the target of the experimental searches, it is now becoming a tool for further exploration

    Alternatives to an Elementary Higgs

    Full text link
    We review strongly coupled and extra dimensional models of electroweak symmetry breaking. Models examined include warped extra dimensions, bulk Higgs, "little" Higgs, dilaton Higgs, composite Higgs, twin Higgs, quantum critical Higgs, and "fat" SUSY Higgs. We also discuss current bounds and future LHC searches for this class of models.Comment: 42 pages, 36 figure

    Disguising the Oblique Parameters

    Full text link
    We point out a set of operator identities that relate the operators corresponding to the oblique corrections to operators that modify fermion couplings to the gauge bosons as well as operators that modify triple gauge boson couplings. Such identities are simple consequences of the equations of motion. Therefore the contributions from new physics to the oblique parameters can be disguised as modifications of triple gauge boson couplings provided the fermion couplings to the gauge bosons are suitably modified by higher dimensional operators. Since the experimental constraints on triple gauge boson couplings are much weaker than the constraints on the oblique parameters this observation allows extra room for model building. We derive operator relations in effective theories of the Standard Model with the electroweak symmetry either linearly or nonlinearly realized and discuss applications of our results.Comment: 12 pages. v2: two references adde

    The leptonic future of the Higgs

    Full text link
    Precision study of electroweak symmetry breaking strongly motivates the construction of a lepton collider with center-of-mass energy of at least 240 GeV. Besides Higgsstrahlung (e+ehZe^+e^- \to hZ), such a collider would measure weak boson pair production (e+eWWe^+e^- \to WW) with an astonishing precision. The weak-boson-fusion production process (e+eννˉhe^+e^- \to \nu \bar{\nu} h) provides an increasingly powerful handle at higher center-of-mass energies. High energies also benefit the associated top-Higgs production (e+ettˉhe^+e^-\to t\bar th) that is crucial to constrain directly the top Yukawa coupling. The impact and complementarity of differential measurements, at different center-of-mass energies and for several beam polarization configurations, are studied in a global effective-field-theory framework. We define a "global determinant parameter" (GDP) which characterizes the overall strengthening of constraints independently of the choice of operator basis. The reach of the CEPC, CLIC, FCC-ee, and ILC designs is assessed.Comment: 55 pages, lots of figures, v2: references added, minor corrections, extended discussions on quadratic EFT contributions and beam polarization effects, matches published version in JHE

    Heavy Higgs Searches: Flavour Matters

    Full text link
    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.Comment: 41 pages, 11 figures and 4 tables (v2: References added. Comment on associated production with a top quark added. Matched published version.

    Up Asymmetries From Exhilarated Composite Flavor Structures

    Get PDF
    We present a class of warped extra dimension (composite Higgs) models which conjointly accommodates the t\bar t forward-backward asymmetry observed at the Tevatron and the direct CP asymmetry in singly Cabibbo suppressed D decays first reported by the LHCb collaboration. We argue that both asymmetries, if arising dominantly from new physics beyond the Standard Model, hint for a flavor paradigm within partial compositeness models in which the right-handed quarks of the first two generations are not elementary fields but rather composite objects. We show that this class of models is consistent with current data on flavor and CP violating physics, electroweak precision observables, dijet and top pair resonance searches at hadron colliders. These models have several predictions which will be tested in forthcoming experiments. The CP asymmetry in D decays is induced through an effective operator of the form (\bar u c)_{V+A}(\bar s s)_{V+A} at the charm scale, which implies a larger CP asymmetry in the D^0\to K^+K^- rate relative the D^0\to \pi^+\pi^- channel. This prediction is distinctive from other Standard Model or dipole-based new physics interpretation of the LHCb result. CP violation in D-\bar D mixing as well as an an excess of dijet production of the LHC are also predicted to be observed in a near future. A large top asymmetry originates from the exchange of an axial resonance which dominantly produces left-handed top pairs. As a result a negative contribution to the lepton-based forward-backward asymmetry in t\bar t production, as well as O(10%) forward-backward asymmetry in b\bar b production above m_{b\bar b}\simeq 600GeV at the Tevatron is expected.Comment: 35 pages, 7 fig

    Strong Higgs Interactions at a Linear Collider

    Get PDF
    We study the impact of Higgs precision measurements at a high-energy and high-luminosity linear electron positron collider, such as CLIC or the ILC, on the parameter space of a strongly interacting Higgs boson. Some combination of anomalous couplings are already tightly constrained by current fits to electroweak observables. However, even small deviations in the cross sections of single and double Higgs production, or the mere detection of a triple Higgs final state, can help establish whether it is a composite state and whether or not it emerges as a pseudo-Nambu-Goldstone boson from an underlying broken symmetry. We obtain an estimate of the ILC and CLIC sensitivities on the anomalous Higgs couplings from a study of WW scattering and hh production which can be translated into a sensitivity on the compositeness scale 4\pi f, or equivalently on the degree of compositeness \xi=v^2/f^2. We summarize the current experimental constraints, from electroweak data and direct resonance searches, and the expected reach of the LHC and CLIC on \xi and on the scale of the new resonances.Comment: 47 pages, 11 figures. v2: eq. 25 has been fixed and the sensitivities quoted in the conclusions slightly revised. Final version to appear on JHE
    corecore